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One of the fundamental questions of cultural evolutionary
research is how individual-level processes scale up to generate
population-level patterns. Previous studies in music have
revealed that frequency-based bias (e.g. conformity and
novelty) drives large-scale cultural diversity in different ways
across domains and levels of analysis. Music sampling is an
ideal research model for this process because samples are
known to be culturally transmitted between collaborating
artists, and sampling events are reliably documented in online
databases. The aim of the current study was to determine
whether frequency-based bias has played a role in the cultural
transmission of music sampling traditions, using a
longitudinal dataset of sampling events across three decades.
Firstly, we assessed whether turn-over rates of popular
samples differ from those expected under neutral evolution.
Next, we used agent-based simulations in an approximate
Bayesian computation framework to infer what level of
frequency-based bias likely generated the observed data.
Despite anecdotal evidence of novelty bias, we found that
sampling patterns at the population-level are most consistent
with conformity bias. We conclude with a discussion of how
counter-dominance signalling may reconcile individual cases
of novelty bias with population-level conformity.
1. Introduction
As Darwinian approaches are increasingly incorporated into
modern musicology [1], researchers have begun to investigate how
transmission biases shape the cultural evolution of music [2–6].
Transmission biases, or biases in social learning that predispose
individuals to favour particular cultural variants, are important
selective forces [7] that can result in significant changes at the
population-level [8–11]. For example, a recent study found evidence
that the presence of positive and negative lyrics in popular music
has been driven by prestige, success and content biases [6].

http://crossmark.crossref.org/dialog/?doi=10.1098/rsos.191149&domain=pdf&date_stamp=2019-09-25
mailto:myoungblood@gradcenter.cuny.edu
https://doi.org/10.6084/m9.figshare.c.4667393
https://doi.org/10.6084/m9.figshare.c.4667393
http://orcid.org/
http://orcid.org/0000-0003-2123-1716
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rsos
R.Soc.open

sci.6:191149
2
In the last several decades, researchers have begun to explore how these kinds of transmission

processes can be inferred from large-scale cultural datasets. This ‘meme’s eye view’ approach [12],
originally pioneered by archaeologists studying ceramics [13,14], has since been applied to dog breeds
[15], cooking ingredients [16], and baby names [17]. In music, this approach has revealed that
frequency-based biases like conformity and novelty, in which the probability of adopting a variant
disproportionately depends on its commonness or rarity [18], vary across domains and levels of
analysis. For example, there is some evidence that dissonant intervals in Western classical music are
subject to novelty bias [19], rhythms in Japanese enka music are subject to conformity bias [19], and
popular music at the level of albums [15] and artists [20] is subject to random copying.1

Music sampling, or the use of previously recorded material in a new composition, is an ideal model
for investigating frequency-based bias in the cultural evolution of music because (1) samples are known
to be culturally transmitted between collaborating artists, and (2) sampling events are reliably
documented in online databases [21]. For researchers, music sampling is a rare case where process is
understood and pattern is accessible. In the current study, we aim to use longitudinal sampling data
to determine whether frequency-based bias has played a role in the cultural transmission of music
sampling traditions. Earlier manifestations of the ‘meme’s eye view’ approach, based on diversity and
progeny distributions, are time-averaged and more susceptible to type I and II error, respectively
[17,22,23]. In the current study, we use two more recent methods, turn-over rates and generative
inference, that better capture the temporal dynamics that result from transmission processes [24].

The turn-over rate of a top list of cultural variants, ranked by descending frequency, is simply the
number of new variants that appear at each timepoint [15]. Examples of top lists in popular culture
include the Billboard Hot 100 music chart and the IMDb Top 250 movies chart. By comparing the
turn-over rates (z) of top lists of different lengths (y), we can gain insight into whether or not the data
are consistent with neutral evolution (i.e. random copying). The turn-over profile for a particular
cultural system can be described with the following function:

zy ¼ A � yx, (1:1)

where A is a coefficient depending on population size and x indicates the level of frequency-based bias
[20,25,26]. Simulation studies indicate that at neutrality x≈ 0.86 [20,25]. Under conformity bias turn-over
rates are relatively slower for shorter top-lists, leading to a convex turn-over profile (x > 0.86). Likewise,
under novelty bias turn-over rates are relatively faster for shorter top-lists, leading to a concave turn-over
profile (x < 0.86) [20].

Generative inference is a powerful simulation-based method that uses agent-based modelling and
approximate Bayesian computation (ABC) to infer underlying processes from observed data [27].
Agent-based modelling allows researchers to simulate a population of interacting ‘agents’ that
culturally transmit information under certain parameters. With a single cultural transmission model,
this method can be used to infer the parameter values that likely generated the observed data
[23,26,28,29]. With competing models assuming different forms of bias, this method can be used to
choose the model that is most consistent with the observed data [23,28,30,31]. In the current study, we
use the basic rejection form of ABC for parameter inference and a random forest machine learning
form of ABC for model choice.
2. Methods
2.1. Data collection
Sampling data were collected from WhoSampled (https://www.whosampled.com/) on 18 February
2019. The analysis was restricted to drum breaks because artists typically only use one drum break
per composition, whereas vocal and instrumental samples are combined more flexibly. For each
sample source tagged as a ‘drum break’, we compiled the release years and artist names for every
sampling event that occurred between 1987 and 2018. Previous years had fewer than 82 cultural
variants and were excluded from the analysis. Collectively, this yielded 1463 sample sources used
38 500 times by 14 387 unique artists. The release years were used to construct a frequency table in
which each row is a year, each column is a sample, and each cell contains the number of times that
1Under certain conditions. The transmission of popular artists on Last.fm is consistent with random copying in generalist groups of
users and conformity in more niche groups of users [20].

https://www.whosampled.com/
https://www.whosampled.com/


Table 1. Notable sampling events for the five most sampled drum breaks used in the current study. The number of times each
drum break has been sampled was collected from WhoSampled on 27 June 2019.

original sample
times
sampled notable sampling events

‘Amen, Brother’ by The Winstons (1969) 3225 ‘Straight Outta Compton’ by N.W.A (1988)

‘King of the Beats’ by Mantronix (1988)

‘I Want You (Forever)’ by Carl Cox (1991)

‘Think (About It)’ by Lyn Collins (1972) 2251 ‘It Takes Two’ by Rob Base & DJ E-Z Rock (1988)

‘Alright’ by Janet Jackson (1989)

‘Come on My Selector’ by Squarepusher (1997)

‘Funky Drummer’ by James Brown (1970) 1517 ‘Fight the Power’ by Public Enemy (1989)

‘I Am Stretched on Your Grave’ by Sinéad O’Connor

(1990)

‘Pop Corn’ by Caustic Window (1992)

‘Funky President (People It’s Bad)’ by

James Brown (1974)

865 ‘Eric B. Is President’ by Eric B. & Rakim (1986)

‘Hip Hop Hooray’ by Naughty by Nature (1993)

‘Wontime’ by Smif-N-Wessun (1995)

‘Impeach the President’ by The Honey

Drippers (1973)

785 ‘The Bridge’ by MC Shan (1986)

‘Mr. Loverman’ by Shabba Ranks (1992)

‘The Flute Tune’ by Hidden Agenda (1995)
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particular sample was used in that year. Notable sampling events for the five most sampled drum breaks
are shown in table 1, and the frequencies of 10 common and 10 rare samples through time are shown in
figure 1.

2.2. Turn-over rates
Turn-over rates were calculated using the HERAChp.KandlerCrema package in R [26]. x was calculated
from top-lists up to size 142 (the minimum number of cultural variants present in a given year) across all
years. The observed distribution of turn-over rates was compared to those expected under neutral
conditions according to Bentley [15] and Evans & Giometto [25].

2.3. Agent-based modelling
Simulations were conducted using the agent-based model of cultural transmission available in the
HERAChp.KandlerCrema package in R [26]. This transmission model generates a population of N
individuals with different cultural variants, and simulates the transmission of those variants between
timepoints given a particular innovation rate (μ) and level of frequency-based bias (b). As departures
from neutrality can only be reliably detected after equilibrium has been reached, this model
incorporates a warm-up period that is excluded from the rest of the analysis. Negative values of b
correspond to conformity bias, while positive values correspond to novelty bias. The output of this
model includes turn-over rates and the Simpson’s diversity index at each timepoint. Simpson’s
diversity index (D) is the probability that any two randomly selected cultural variants are of the same
type, where values closer to 0 indicate high diversity and values closer to 1 indicate low diversity [32].

2.4. Parameter inference
Parameter inference was conducted with the rejection algorithm of ABC, using the EasyABC [33] and abc
[34] packages in R, in three basic steps:

(1) 100 000 iterations of the model were run to generate simulated summary statistics for different values
of b within the prior distribution.
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Figure 1. Violin plots showing the frequencies of samples, ranked by overall use, from 1980 to 2019. The x-axis is the rank of each
sample, and the y-axis is the year. To the left of the dotted line are samples 1–10, while to the right are samples 501–510. More
common samples (on the left) appear to be much more stable over time than rarer ones. The high popularity of the more common
samples in the late 80s and early 90s is likely due to the rapid expansion of sample-based hip-hop and dance music triggered by
increased access to digital samplers and more relaxed copyright enforcement during that period.
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(2) The Euclidean distance between the simulated and observed summary statistics was calculated for
each iteration.

(3) The 1000 iterations with the smallest distances from the observed data, determined by the tolerance
level (ɛ = 0.01), were used to construct the posterior distribution of b.

The exponent of the turn-over function (x) and the mean Simpson’s diversity index (�D) were used as
summary statistics for parameter inference. Population size (N = 729), innovation rate (μ = 0.037), and
warm-up time (t = 200) were kept constant for all models, and a uniform prior distribution was used
for b (− 0.2–0.2). Population size was calculated from the mean number of unique artists involved in a
sampling event at each timepoint in the observed dataset. Innovation rate was calculated from the
mean number of new sample types per total number of samples at each timepoint in the observed
dataset, according to Shennan & Wilkinson [35]. The warm-up time was determined by running 1000
iterations of a neutral model with the observed innovation rate over 500 timepoints [23] and
estimating when observed diversity reaches equilibrium (see electronic supplementary material, figure
S1). The bounds of the uniform prior distribution for b, adapted from Crema et al. [23], were reduced
based on observed levels of frequency-based bias in other cultural systems [26,27,29]. Each model was
run for 32 timepoints, which corresponds to the number of years in the observed dataset.
2.5. Model choice
Model choice was conducted with the random forest algorithm of ABC, using the abcrf [36] package in
R. Random forest is a form of machine learning in which a set of decision trees are trained on bootstrap
samples of variables, and used to predict an outcome given certain predictors [37]. Traditional ABC
methods function optimally with fewer summary statistics [38], requiring researchers to reduce the
dimensionality of their data. We chose to use random forest for model choice because it appears to be
robust to the number of summary statistics [36], and does not require the exclusion of potentially
informative variables. The random forest algorithm of ABC was conducted with the following steps:

(1) 50 000 iterations of each model (conformity, novelty, and neutrality) were run to generate simulated
summary statistics for different values of b within the prior distributions.
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Figure 2. The observed turn-over rates (z) for top-lists up to size 142, compared to those expected under neutral conditions
according to Bentley [15] (in blue) and Evans & Giometto [25] (in orange). The x-axis is the size of the top lists for which z,
on the y-axis, was calculated.
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(2) The results of these three models were combined into a reference table with the simulated summary
statistics (and calculated LDA2 axes) as predictor variables, and the model index as the outcome
variable.

(3) A random forest of 1000 decision trees was trained with bootstrap samples from the reference table
(150 000 rows each).

(4) The trained forest was provided with the observed summary statistics, and each decision tree voted
for the model that the data were likely generated by.

(5) The posterior probability of the model with the majority of the votes was calculated using the out-of-
bag data that did not make it into the bootstrap training samples.

The details of this process are outlined by Pudlo et al. [36]. The following 178 summary statistics were
used for model choice: the exponent of the turn-over function (x), the mean turn-over rate ( �zy)
for each list size (up to 142), the Simpson’s diversity index for each timepoint (D) (up to 32), the
mean Simpson’s diversity index (�D), and the two LDA axes. Population size (N = 729), innovation rate
(μ = 0.037) and warm-up time (t = 200) were kept constant for all models. Uniform prior distributions
were used for b in both the conformity (− 0.2–0) and novelty (0–0.2) models, whereas b was kept
constant at 0 for neutrality.
3. Results
The observed turn-over rates, as well as those expected under neutral conditions, can be seen in figure 2.
Kolmogorov–Smirnov tests found that the observed distribution of turn-over rates is significantly
different from the neutral expectations of both Bentley [15] (p < 0.001) and Evans & Giometto [25]
(p < 0.001). The value of the exponent x (see equation (1.1)) for the observed data is 1.13, which is
indicative of conformity bias.

The posterior probability distribution of the level of frequency-based bias (b), constructed with the
basic rejection algorithm of ABC, is shown in figure 3. Based on the parameter estimation of b, the
observed data are most consistent with weak but significant conformity bias (median =−0.012; 95%
HDPI: [−0.019,−0.0020]). A goodness-of-fit test (n = 1000; ɛ = 0.01) indicates that the model is a good
fit for the data (p = 0.47) (see electronic supplementary material, figure S2) [39], and leave-one-out
2Linear discriminant analysis (LDA) is a method of dimensionality reduction, similar to PCA, that compresses multiple variables onto
two axes while maximizing the separation between classes.
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Figure 3. The posterior probability distribution of the level of frequency-based bias (b), with the median shaded in dark grey and
the 95% HDPI shaded in light grey.

Table 2. The number of votes cast by the trained random forest for each model after being provided with the observed
summary statistics, as well as the posterior probability of the selected model (conformity).

conformity novelty neutrality post. prob.

436 174 390 0.89
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cross validation indicates that the results are robust across tolerance levels (n = 10; ɛ: 0.005, 0.01, 0.05) (see
electronic supplementary material, figure S3) [34].

The results of the model choice using the random forest algorithm of ABC can be seen in table 2. The
conformity model has the strongest support (436 votes) with a posterior probability of 0.89. The out-of-
bag error, calculated by running the out-of-bag data through the random forest, was 0.046 (see electronic
supplementary material, figure S4), indicating that the forest is a good classifier for the data. The most
important variable for the classification ability of the random forest, identified using the Gini impurity
method, was mean diversity (�D), followed by the first LDA axis (LD1), the exponent of the turn-over
function (x), and the second LDA axis (LD2). The importance of the top ten variables, as well as the
results of the LDA, can be seen in electronic supplementary material, figures S5 and S6.
4. Discussion
By applying simulation-based methods to three decades of sampling events, we have provided evidence
that conformity bias plays an important role in the cultural transmission of music sampling traditions.
Firstly, turn-over rates for longer list sizes are higher than expected under neutral evolution, indicating
that artists may be selectively using more popular samples. In addition, the rejection algorithm of
ABC found that transmission models assuming low but significant levels of conformity bias best
match the observed data. Lastly, a random forest trained on simulated data from three transmission
models classified the observed data as coming from the conformity model. Taken together, these
results indicate that music producers tend to conform to the sampling patterns of others, which is
consistent with reports of artists using particular samples as signals of community membership (e.g.
the Amen break) [40].

Although our results are concordant with evidence of conformity bias in Japanese enka music [19],
they conflict with evidence of novelty bias in Western classical music [19] and neutral evolution in
popular music [15,20]. In the study of Western classical music, frequency-based bias was identified by
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looking at changes in the means and standard deviations of the frequencies of particular cultural variants

[19]. Despite the fact that these measures appear to be intuitive indicators of frequency-based bias, they
do not account for competition between cultural variants as frequencies change. For example, novelty
bias would be expected to favour rare variants only until they become relatively common and are
supplanted by rarer variants. These kinds of dynamic processes are better captured by turn-over rates
and simulation-based methods. In the two studies of popular music, researchers looked at the
transmission of albums and artists between listeners using data from the Billboard charts [15] and
Last.fm [20]. It is possible that the low cost of listening relative to producing allows individuals to
explore new music at random rather than relying on frequency-based bias. That being said, we
suspect that turn-over rates on the Billboard charts [15] may not accurately reflect the behaviour of
listeners, given that the charts have historically been manipulated by record labels and distributors
[41]. Last.fm, on the other hand, is a more reliable source of transmission data as users can directly
share music with one another in groups [20]. Interestingly, while turn-over rates of top artists in
generalist groups of users were consistent with neutral evolution, rates in more niche groups (e.g.
female-fronted metal) were consistent with conformity bias [20]. It is possible that individuals in more
niche groups feel a greater sense of community and are influenced more by other listeners, although
this idea has yet to be tested. Overall, the discrepancies between the current and previous studies
indicate that frequency-based bias in music may vary depending on the level of analysis (e.g. samples
between artists versus artists between listeners) and cost of adoption (e.g. work-intensive production
process versus clicking a streaming link), so the results of the current study may not be generalizable
across all musical domains.

A recent study on music sampling found that less popular artists culturally transmit samples with
one another at higher rates [21]. In combination with anecdotes of artists selectively avoiding popular
samples (e.g. De La Soul refusing to sample mainstream artists) [42], this suggests that novelty bias
may be present. Counter-dominance signalling is a recently developed hypothesis [43] that may
reconcile the strong conformist signal in our data with the indications of novelty bias in the literature
[21,42]. This hypothesis posits that low popularity ‘outsiders’ develop new styles in opposition to
those expressed by high popularity ‘elites’. Over time, these new styles become widespread enough to
be adopted by elites, allowing space for new counter-elite styles to emerge in response [43]. In other
words, novelty bias may cause new styles to be adopted by outsiders, and conformity bias may allow
those new styles to spread and eventually be expressed by elites. If less popular artists are much more
common and tend to favour samples used within their community over those used by more popular
artists, then population-level sample frequencies are likely to reflect conformity bias over novelty bias.
This hypothesis is consistent with the emphasis that many artist communities place on collective
cultural production in opposition to the ‘mainstream’ [44].

There are several limitations to this study that need to be highlighted. Firstly, the turn-over rate results
should be interpreted with caution, as recent work indicates that the exponent of the turn-over function
(x) may be overestimated when fewer than 40 timepoints are analysed [26]. Additionally, traditional ABC
requires researchers to choose a subset of summary statistics, which can have a significant effect on
parameter estimation. Luckily, the two statistics we used for parameter estimation ended up being the
most important variables for classification by the random forest (excluding the LDA axes). Lastly,
recent work indicates that the inclusion of rare variants is important for inferring underlying cultural
transmission biases from population-level data [17]. As WhoSampled is a crowd-sourced database, its
coverage of popular variants is presumably much more complete than its coverage of rare variants.
Algorithms for sample-detection may allow researchers to reconstruct full transmission records in the
future, but these approaches are not yet publicly available [45,46].

The results of the current studyadd to an expanding bodyof literature addressing how frequency-based
bias influences cultural diversity at the population-level. In addition, we have provided further validation
of generative inference methods that allow researchers to bridge pattern and process in cultural evolution.
Future studies should employ more complex agent-based models that incorporate social status to
determine whether counter-dominance signalling influences cultural transmission within music
production communities, as well as other forms of transmission bias (e.g. content and prestige) to
control for equifinality.
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doi.org/10.7910/DVN/TWADX4.
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