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A Longitudinal Assessment of Benthic Macroinvertebrate 
Diversity and Water Quality along the Bronx River

Maleha Mahmud1,2, David C. Lahti1,2, and Bobby Habig1,3,4,*

Abstract - The Bronx River is an urban waterway with a long history of anthropo-
genic disturbance. We conducted a longitudinal assessment of the Bronx River’s water 
quality by measuring benthic macroinvertebrate diversity at 6 sites along the river. We 
integrated long-term water-quality data collected by the New York State Department of 
Environmental Conservation. We found that the overall water quality of the river has re-
mained moderately impacted over different timepoints throughout the past 22 years. The 
study site upstream of combined sewage overflows and municipal separate stormwater 
systems exhibited healthier biological profiles, whereas the most-downstream sites ex-
hibited slight declines in water quality. The most recent survey of the Bronx River (2020) 
revealed that high invasive species dominance was associated with benthic macroinverte-
brate communities that were less healthy. Notably, one invasive species not documented 
in historical surveys, Corbicula fluminea (Asian Clam), was sampled in 5 of 6 study sites 
during the 2020 surveys. Moreover, no species were sampled from the order Ephemer-
optera (mayflies) in 2020 despite being present in previous surveys. These results can be 
used to guide the management of urban rivers. 

Introduction

 Urban freshwater rivers are critical ecosystems for wildlife and humans (Albert 
et al. 2020). Many animals utilize urban rivers for sources of food, water, and liv-
ing space, e.g., benthic macroinvertebrates (Wilson et al. 2021), birds (Xie et al. 
2020), and fishes (Zanatta et al. 2017). In addition to providing habitats for a wide 
variety of nonhuman animals, urban rivers also provide different resources for 
humans including food, water, transportation, and recreation (Kondolf and Pinto 
2017, Lerner and Holt 2012). However, over the past century, urban rivers have 
undergone extensive degradation and overexploitation, which has been largely at-
tributed to increased urbanization (Beißler and Hack 2019, Bernhardt and Palmer 
2007, O’Neil et al. 2016). Some factors associated with urbanization that have con-
tributed to the decline of urban rivers include increased impervious surface cover 
(Bauer et al. 2007, Shuster et al. 2005), municipal and industrial discharges (Paul 
and Meyer 2001), and escalated human population density (Olson et al. 2016). 
These and other anthropogenic factors have led to rapid declines in freshwater bio-
diversity (Darwall et al. 2018, Fierro et al. 2018).
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 Benthic macroinvertebrates are important components of urban freshwater eco-
systems. These animals provide vital ecological services including nutrient cycling, 
decomposition, and food sources for both aquatic and land animals (Cao et al. 2018, 
Covich et al. 1999, Paul and Meyer 2001, Wallace and Webster 1996). Addition-
ally, benthic macroinvertebrates have been found to be important indicators of 
water quality as they vary in their sensitivity to environmental stressors (Hilsenhoff 
1987). Some benthic macroinvertebrate taxa, such as Ephemeroptera (mayflies), 
Plecoptera (stoneflies), and Trichoptera (caddisflies), are known to be very sensitive 
to degraded water quality, whereas other taxa, such as Asellidae (isopods), Chiron-
omidae (non-biting midges), and Tubificidae (sludge worms), have been found to 
be more tolerant of pollution (Hilsenhoff 1987). Because of their value in indicating 
various disturbances in aquatic habitats, benthic macroinvertebrates are frequently 
used in biomonitoring surveys (Bae et al. 2005; Bode et al. 1998, 2003; Deborde et 
al. 2016; Linke et al. 1999; Muralidharan et al. 2010; Smith et al. 2015).
 Several factors, including upstream versus downstream locations (e.g., Ogbeibu 
and Oribhabor 2002), forested versus developed areas (e.g., Miserendino et al. 
2011), and the proportion of invasive species (e.g., Francis et al. 2019), have been 
found to influence community composition of benthic macroinvertebrates in urban 
rivers. As rivers flow downstream, they tend to accumulate more pollutants, mu-
nicipal discharge, and industrial waste (Alexander et al. 2007, Schertzinger et al. 
2019). Accordingly, several studies have reported declines in water quality (e.g., 
Miskewitz and Uchrin 2013, Sun et al. 2016, Svensson et al. 2018) and shifts in 
benthic macroinvertebrate community composition (e.g., Azrina et al. 2006, Gray 
2004) on an upstream–downstream gradient. In addition, the dominant land-cover 
type is another factor predictive of benthic macroinvertebrate diversity and water 
quality (du Plessis et al. 2015, Sponseller et al. 2001). In contrast to greenspaces, 
highly developed areas are comprised of high proportions of impervious surface 
cover, which results in predictable changes in stream ecology (Bauer et al. 2007, 
Paul and Meyer 2001) and major declines in benthic macroinvertebrate diversity 
(Paul and Meyer 2001, Utz et al. 2009). Finally, urban rivers are often dominated 
by invasive species (Francis et al. 2019). Two common invasive species observed 
in freshwater streams of North America are Corbicula fluminea (O.F. Müller) 
(Asian Clam; Ilarri and Sousa 2012, Sousa et al 2008) and Faxonius rusticus (Gi-
rard) (Rusty Crayfish; Wilson et al. 2004). Previous studies have shown that these 
invasive species can have adverse effects on other benthic macroinvertebrate taxa 
(Ferreira-Rodríguez et al. 2018, Haag et al. 2021, McCarthy et al. 2006, Modesto 
et al. 2019, Nilsson et al. 2012, Smith et al. 2019). For example, Asian Clams can 
negatively impact native bivalves by reducing the survival of native mussels’ larva 
(Modesto et al. 2019) and by outcompeting native bivalves for resources (Ferreira-
Rodríguez et al. 2018, Strayer 1999). Additionally, the Rusty Crayfish has been 
found to outcompete native crayfish (Smith et al. 2019) and reduce benthic macro-
invertebrate abundance (McCarthy et al. 2006, Nilsson et al. 2012). Understanding 
the effects that these 3 factors—upstream versus downstream locations, forested 
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versus developed areas, and the proportion of invasive species—have on benthic 
macroinvertebrate communities can be a useful way to monitor the overall health 
of urban rivers. 
 Over the past few decades, the New York State Department of Environmental 
Conservation’s Stream Biomonitoring Unit (NYSDEC-SBU) has conducted bio-
logical assessments to evaluate the water quality of the Bronx River (Bode et al. 
1998, 2003; Smith et al. 2015). The Bronx River runs through one of the largest 
metropolitan areas in the world. It is New York City’s only freshwater river and was 
once a source of drinking water for Native Americans and early European settlers 
(de Kadt 2011). However, in the ensuing centuries, several factors contributed to 
the degradation of the river: the operation of mills from 1680 to 1934, the devel-
opment of railroads since 1841, rapid population growth in the Bronx during the 
mid-1800s, and industrial development throughout the 19th century (de Kadt 2011). 
During the 20th century and afterwards, other factors, including the straightening 
and rechanneling of the river, gas and oil runoff, the dumping of automobile bod-
ies into the river, and combined sewage overflow, also contributed to the decline in 
habitat quality of the Bronx River (de Kadt 2011).
 The first biological assessment of the Bronx River by NYSDEC-SBU was con-
ducted in 1998 (Bode et al. 1998), followed by 2 subsequent surveys, one in 2003 
(Bode et al. 2003) and another in 2015 (Smith et al. 2015). In these 3 surveys, ben-
thic macroinvertebrates were used as biological indicators of water quality (Bode et 
al. 1998, 2003; Smith et al. 2015). The survey conducted in 1998 revealed that the 
Bronx River exhibited moderately impacted water quality (Bode et al. 1998). The 2 
subsequent studies (Bode et al. 2003, Smith et al. 2015) found similar water quality 
impact as the initial study. The results of these 3 biological assessments suggest that 
there has been no apparent change in benthic macroinvertebrate diversity between 
1998 and 2015. Therefore, evaluating how the water quality of the Bronx River 
has changed temporally and which locations/habitats have increased, maintained, 
or decreased in biodiversity over time is important to better inform urban stream 
monitoring and restoration strategies.
 The aim of this study was to conduct a longitudinal assessment of benthic mac-
roinvertebrate diversity along the Bronx River as an indication of water quality. The 
study addressed 3 major research questions:

(1) How does benthic macroinvertebrate diversity currently vary based on 
geographical location, land cover, and proportion of invasive species?
(2) How have biodiversity indices, pH, and physical variables of the Bronx 
River changed over the past 22 years?
(3) How has benthic macroinvertebrate diversity varied among study sites 
over the past 22 years?

Based on our first research question, we predicted that habitats located upstream, 
surrounded predominantly by greenspace, and comprised of relatively low inva-
sive species abundance, would harbor greater benthic macroinvertebrate diversity 
than habitats located downstream, surrounded predominantly by developed space, 
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and comprised of relatively high invasive species abundance. Because previous 
surveys of the Bronx River have not shown any notable changes in water quality, 
we predicted that biodiversity indices will continue to remain similar to past val-
ues. Alternatively, since several restoration efforts have attempted to improve the 
health of the Bronx River, water quality might have improved, leading to increased 
biodiversity compared to previous study years, or a weak or absent spatial gradient.
 To test each prediction, we sampled benthic macroinvertebrates at 6 study sites 
along the Bronx River. Additionally, we measured pH, water temperature, river 
depth, and river width at each site. The study sites were selected to correspond 
with the previous surveys conducted along the Bronx River by the NYSDEC-SBU 
(Bode et al. 1998, 2003; Smith et al. 2015). Because the Bronx River is a critical 
ecosystem for sustaining urban biodiversity, long-term monitoring of the river’s 
water quality as measured by benthic macroinvertebrate communities can be help-
ful to mitigate the effects of anthropogenic disturbances, as well as to monitor and 
conserve benthic macroinvertebrate diversity in degraded habitats.

Methods

Field-site description
 This study was conducted at 6 riffle habitat locations along the Bronx River 
(Figs. 1, 2). The Bronx River extends ~36 km from its source in Westchester 
County to its mouth, a tidal strait connected to the Long Island Sound (de Kadt 
2011, Natural Resources Group 2008). Assessments conducted on the Bronx River 
during 1998 and 2003 include surveys at 4 locations: (1) Valhalla; (2) White Plains; 
(3) Tuckahoe; and (4) East Gun Hill Road (Bode et al. 1998, 2003). However, a sur-
vey conducted in 2015 excluded 1 of the 4 sites (Tuckahoe) and added 2 additional 
sites (Mount Vernon and East 182nd Street) for a total of 5 study locations. For the 
purposes of this study, we surveyed all 6 of these locations and ordered the study 
sites from 1 to 6 (from north to south) incorporating all sites previously surveyed 
by NYSDEC-SBU. The northernmost study sites (sites 1–3) were located in subur-
ban areas, whereas the southernmost study sites (sites 4–6) were located in highly 
urbanized areas.

Macroinvertebrate sampling and identification
 We followed NYSDEC-DOW’s guidelines for benthic macroinvertebrate 
sampling, sorting, sub-sampling, and identification (NYSDEC-DOW 2019). We 
collected benthic macroinvertebrates on 12 September 2020 to correspond with 
sampling dates of the 3 previous studies (23 September 1998 [Bode et al. 1998], 
17 September 2003 [Bode et al. 2003], 12 September 2015 [Smith et al. 2015]). 
To sample macroinvertebrates, we used the standardized kick-sampling method 
(see Bode et al. 1998, 2003; Smith et al. 2015). Following sample collection, we 
preserved specimens in jars containing two-thirds 95% ethanol and one-third river 
water. During sample sorting, we used a US No 40 standard sieve to clean any 
residue while rinsing samples with tap water and then placed the rinsed samples on 
a gridded enamel pan such that they were evenly placed across the bottom of the 
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Figure 1. The 6 study sites along the Bronx River in New York surveyed for longitudi-
nal assessment of benthic macroinvertebrate diversity: (A) Valhalla, (B) White Plains, 
(C) Tuckahoe, (D) Mount Vernon, (E) East Gun Hill Road Bronx, (F) East 182nd Street 
Bronx. Photographs © Bobby Habig.

pan. We used a random-number generator to select samples from each 6.5 cm x 6.5 
cm numbered square grid. We placed the randomly selected samples in a Petri dish 
and used a dissecting stereomicroscope (Zeiss Stemi 2000-C; Munich, Germany) to 
sub-sample 100 organisms. We sorted and counted the sub-sampled organisms and 
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placed them in vials containing 70% alcohol. We identified all preserved organisms 
to the family level using 2 identification keys (Pennak 1978, Voshell 2002).

Figure 2. Map of the 6 study sites (yellow pins) surveyed for longitudinal assessment of 
benthic macroinvertebrate diversity. Red diamonds represent locations of combined sew-
age overflows and orange diamonds indicate locations with municipal separate stormwater 
systems. Map © Amanda Goldstein and used with permission. 
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Water chemistry and physical variables
 At each study site, we measured water temperature (°C) using a digital ther-
mometer (REOTEMP TM99A; San Diego, CA), river width and depth at the 
midpoint to the nearest centimeter using a closed reel tape, and pH to the nearest 
hundredth using a pH meter (YSI PRO 10 pH/ORP/temperature portable meter; 
Yellow Springs, OH). 

Land-cover type
 We calculated percent land cover using ArcGIS Pro 2.6 (Esri, Redlands, CA) 
and the National Land Cover Database (Dewitz 2019). We created circular buffers 
with 100-m radii surrounding the center of each of the 6 study sites. We catego-
rized percent land cover into 3 distinct land-cover types by combining the percent 
land cover of similar groups into 3 variables: (1) developed, (2) open space, and 
(3) greenspace (Goldstein et al. 2022). Developed areas were largely comprised of 
constructed material and impervious surface cover, open spaces were comprised 
of homogenous vegetation in the form of lawns and golf courses, and greenspaces 
were dominated by trees and shrubs (Dewitz 2019). 

Biodiversity indices
 We used 6 family-level biodiversity indices recommended by the NYSDEC-
DOW (2019) (see Supplemental Table S1 in Supplemental File 1, available online 
at https://www.eaglehill.us/NENAonline/suppl-files/n29-4-N1976-Habig-s1, and 
for BioOne subscribers, at https://www.doi.org/10.1656/N1976.s1): (1) family 
richness, defined as the number of distinct benthic macroinvertebrate families 
based on a sub-sample of 100 randomly selected organisms (Xu et al. 2014); 
(2) Ephemeroptera-Plecoptera-Trichoptera (EPT) family richness, the total 
number of mayfly (Ephemeroptera), stonefly (Plecoptera), and caddisfly (Tri-
choptera) larvae families in a sub-sample of 100 randomly selected organisms 
(NYSDEC-DOW 2019); (3) Hilsenhoff’s family biotic index (FBI), an index 
measuring a benthic macroinvertebrate community’s pollution-tolerance level 
(Hilsenhoff 1988, NYSDEC-DOW 2019); (4) percent model affinity (PMA), an 
index comparing a sample community to a model non-impacted community based 
on the abundance percentage of major benthic macroinvertebrate taxa (higher 
percentage similarity indicates a healthier community; NYSDEC-DOW 2019); 
(5) Biological assessment profile (BAP), an index of overall water quality based 
on conversion formulas that transforms the first 4 biodiversity indices above onto 
a common scale (NYSDEC-DOW 2019); and (6) dominant family, defined as the 
percentage of the most numerous family based on a sub-sample of 100 randomly 
selected organisms (NYSDEC-DOW 2019). We converted data from 3 previous 
surveys conducted along the Bronx River (Bode et al. 1998, 2003; Smith et al. 
2015) into the 6 family-level biodiversity indices and compared them to the re-
sults from our survey. 
 We calculated BAP scores based on methods previously validated by 
NYSDEC-DOW (2019). Briefly, we used conversion formulas (NYSDEC-
DOW 2019) to standardize 4 biodiversity indices (family richness; EPT 
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family richness; FBI; PMA) onto a common scale of 0 to 10 (low to high water 
quality). The resulting BAP score is an average of these 4 standardized biodi-
versity indices. We classified BAP scores into 4 water quality impact categories: 
(1) severely impacted (BAP = 0–2.5), (2) moderately impacted (BAP = 2.5–5.0), 
(3) slightly impacted (BAP = 5.0–7.5), and (4) non-impacted (BAP = 7.5–10). 
Hereafter, BAP and overall water quality are used interchangeably.

Statistical analyses
 All analyses were conducted using R version 4.03 (R Core Team 2020). We con-
ducted Kruskal–Wallis tests using the ‘stats’ package to compare differences across 
the 6 study sites (Figs. 1, 2). We divided the Bronx River into 3 reaches—upper 
(sites 1 and 2), middle (sites 3 and 4), and lower (sites 5 and 6)—to classify study 
sites based on geographical locations. We classified study sites as having “high” in-
vasive species dominance if more than 50 percent of a sub-sample of 100 randomly 
selected organisms were invasive, and “low” invasive species dominance if less 
than 50 percent of 100 randomly selected organisms were invasive.
 We conducted mixed-effects repeated-measure ANOVAs using the ‘nlme’ pack-
age (Pinheiro et al. 2017) to compare metrics of biodiversity both temporally and 
spatially. For all temporal and spatial analyses, we included 1 of the 6 indices of 
biodiversity as a response variable. For temporal analyses, we also ran separate 
models including each water chemistry (pH) and physical (temperature, river width, 
and river depth) parameter as a response variable, study year as a predictor, and 
study site as a random effect. We ran a random intercept and random slope model 
accounting for site-level variability among temporal data. For spatial analyses, we 
included study site as a predictor variable and study year as a random effect. The 
temporal analyses, based on comparisons between years, only included the 3 study 
sites (sites 1, 2, and 5) in which there were data available for all 4 time periods 
(1998, 2003, 2015, 2020). Following all analyses, we used the ‘multcomp’ package 
to conduct Tukey post hoc tests. This allowed us to compare differences between 
years and sites.

Results

Biodiversity indices based on samples collected in 2020
 Biodiversity indices, based on samples collected in 2020, varied across the 6 
study sites (Table 1). Family richness varied from 6 to 10 (mean = 9, SD = 1.55); 
sites with the highest family richness (n = 10) were located at sites 1, 3, and 5, 
while the site with the fewest families (n = 6) was located at site 4. EPT family 
richness did not vary across the 6 study sites (mean = 1, SD = 0). FBI (pollu-
tion tolerance) varied from 5.49 to 6.06 (mean = 5.86, SD = 0.20); the study site 
with the highest proportion of pollution-tolerant taxa was located at site 5, and 
the study site with the lowest proportion of pollution-tolerant taxa was located at 
site 1. PMA varied from 15% to 54% (mean = 24.5, SD= 14.73); the site with the 
highest percent affinity (54%) to a non-impacted community was located at site 
1, and the location with lowest percent affinity (15%) was found at site 4. Family 
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dominance varied from 25% to 68% (mean = 53.5, SD =16.13). The most domi-
nant family was Corbiculidae at 3 study sites (sites 2, 5, and 6), Gammaridae at 
2 study sites (sites 3 and 4), and Hydropsychidae at 1 study site (site 1). Notably, 
Family Corbiculidae was comprised entirely of Asian Clams, an invasive species 
not previously documented in the 3 previous studies of the Bronx River (Bode et 
al. 1998, 2003; Smith et al. 2015).

Chemical, physical, and land-cover variables based on samples collected in 2020
 Water chemistry and physical variables measured in 2020 varied across study 
sites (Table 1): pH varied from 7.01 to 7.28, river depth varied from 7.5 cm to 56.0 
cm, river width varied from 820 cm to 1680 cm, and water temperature varied from 
17.5 °C to 23.0 °C. Most study sites were dominated by developed land and open 
space (i.e., lawns and golf courses); on average, only 10.38% of the land surround-
ing the 6 study sites (100-m radii) was comprised of greenspace (Table 1).

Proportion of invasive species based on samples collected in 2020
 The proportion of invasive species in the 2020 dataset varied from 0% to 68% 
(mean = 38.00; SD = 26.59). Specifically, site 1 harbored 0% invasive species, 
while site 5 was comprised of 68% invasive species. Overall, there were 2 invasive 
species sampled across study sites: the Asian Clam (Family Corbiculidae; mean 
= 36.17, SD = 26.60, min–max = 0–68) and Rusty Crayfish (Family Cambaridae; 
mean = 3.50, SD = 4.76, min–max = 0–11).

Table 1. Mean, minimum, maximum, and standard deviation (SD) of benthic macroinvertebrate com-
munity parameters, water chemistry and physical variables, and percent land cover (100-m radii) 
across 6 study sites sampled along the Bronx River in 2020.

Variable	 Mean	 Min	 Max	 SD

Biodiversity indices
  Family richness	 9.00	 6.00	 10.00	 1.55
  Family richness (DEC conversion scale)	 4.59	 2.31	 5.50	 1.25
  EPT family richness	 1.00	 1.00	 1.00	 0.00
  EPT family richness (DEC conversion scale)	 2.50	 2.50	 2.50	 0.00
  Family biotic index	 5.86	 5.49	 6.06	 0.20
  Family biotic index (DEC conversion scale)	 4.50	 4.07	 5.64	 0.58
  Percent model affinity	 24.50	 15.00	 54.00	 14.73
  Percent model affinity (DEC conversion scale)	 1.05	 0.00	 5.81	 2.34
  Biological assessment profile (BAP)	 3.16	 2.25	 4.86	 0.89
  Family dominance	 53.50	 25.00	 68.00	 16.13

Water chemistry and physical variables
  pH	 7.17	 7.01	 7.28	 0.10
  Depth (cm)	 29.97	 7.50	 56.00	 19.18
  Width (cm)	 1195.00	 820.00	 1680.00	 328.62
  Water temperature (°C)	 20.18	 17.50	 23.00	 2.00

Percent land cover
  Percent developed	 46.95	 12.50	 86.96	 28.33
  Percent open space	 41.29	 4.35	 80.00	 30.59
  Percent greenspace	 10.38	 0.00	 25.00	 11.08
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2020 analyses
 Based on Kruskal–Wallis tests, we found that study sites with low invasive 
species dominance exhibited higher PMA (KW = 4.80, P = 0.028) and BAP (KW 
= 3.43, P = 0.064) profiles than study sites with high invasive species dominance. 
However, we found no significant differences in biodiversity indices across study 
sites when comparing geographical location (reach) and dominant land-cover type.

Longitudinal changes in abundance by family from 1998 to 2020
 Twenty-eight unique families (mean = 18.25; SD = 3.99; min–max = 15–22) were 
identified over the past 22 years, varying from a high of 22 in 1998 to a low of 15 in 
2003 (see Supplemental Tables S2–S5 in Supplemental File 1). The 5 most common 
families sampled during the 22-year period were Chironomidae (21.16% of total 
samples), Gammaridae (18.58% of total samples), Hydropsychidae (17.63% of to-
tal samples), Corbiculidae (10.89% of total samples), and Naididae (8.21% of total 
samples) (Fig. 3). In 1998, the 2 most common families sampled along the Bronx 
River were Hydropsychidae (37.25% of 1998 samples) and Chironomidae (31.75% 
of 1998 samples) (see Supplemental Table S2 in Supplemental File 1). In 2003, the 
2 most common families sampled were Chironomidae (38.75% of 2003 samples) 
and Naididae (29.00% of 2003 samples) (see Supplemental Table S3 in Supple-
mental File 1). In 2015, the 3 most common families sampled were Gammaridae 
(23.00% of 2015 samples), Hydropsychidae (19.60% of 2015 samples), and Chi-
ronomidae (19.60% of 2015 samples) (see Supplemental Table S4 in Supplemental 
File 1). In 2020, the 2 most common families sampled were Gammaridae (35.67% 
of 2020 samples) and Corbiculidae (34.50% of 2020 samples) (see Supplemental 
Table S5 in Supplemental File 1).

Figure 3. Longitudinal changes in the percent abundance of the 5 most common families 
sampled along the Bronx River from 1998 to 2020.
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Temporal changes in biodiversity indices
 Over the past 22 years, overall water quality along the Bronx River has varied 
from slightly impacted to severely impacted (Fig. 4A–F). Across all years, the aver-
age BAP score was 3.74 (SD = 1.05), which is indicative of moderately impacted 
water quality. The study site located farthest from the mouth of the Bronx River 
(site 1) exhibited the highest average BAP score (mean = 5.23, SD = 0.58, min–max 
= 4.84–6.07); however, the water quality impact scale at this location has steadily 
decreased over the past 22 years from slightly impacted in 1998 (BAP = 6.07) to 
moderately impacted in 2020 (BAP = 4.86) (Fig. 4A). Site 2, which is located 27.8 
km from the river mouth, consistently exhibited a moderate water quality impact 
scale (mean = 2.99, SD = 0.48, min–max = 2.52–3.64; Fig. 4B). Site 3, located 19.6 
km from the river mouth, exhibited a decline in water quality from 1998 (moderate 

Figure 4. Longitudinal changes in biodiversity indices over the past 22 years at 6 locations: 
(A) site 1 (Valhalla), (B) site 2 (White Plains), (C) site 3 (Tuckahoe), (D) site 4 (Mount 
Vernon), (E) site 5 (East Gun Hill Road), (F) site 6 (East 182nd Street Dam). 
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Table 2. Tukey post hoc test results for differences in biodiversity indices and chemical and physical 
variables between years. Statistical significance: † P < 0.1, * P < 0.05, ** P < 0.01, *** P < 0.001.

	 Year comparison	 Estimate	 SE	 z-value	 P

Biodiversity indices
  Biological assessment profile (BAP)	 1998–2020	 0.890	 0.383	 -2.322	 0.093†
  Family biotic index (FBI)	 1998–2003	 1.383	 0.491	 -2.816	 0.025*
  Family biotic index (FBI)	 2003–2020	 -1.453	 0.491	 2.959	 0.016*

Water chemistry and physical variables
  pH	 1998–2015	 -0.733	 0.104	 7.088	 <0.001***
  pH	 1998–2020	 0.407	 0.104	 -3.930	 <0.001***
  pH	 2003–2015	 -0.900	 0.104	 8.698	 <0.001***
  pH	 2003–2020	 0.240	 0.104	 -2.320	 0.094†
  pH	 2015–2020	 1.140	 0.104	 -11.018	 <0.001***
  River depth	 1998–2015	 -33.333	 12.871	 2.590	 0.047*
  River depth	 2015–2020	 30.767	 12.871	 -2.390	 0.079†
  River width	 1998–2015	 -866.700	 209.200	 4.143	 <0.001***
  River width	 1998–2020	 -570.000	 209.200	 2.725	 0.032*
  Temperature	 1998–2015	 -3.300	 1.355	 2.435	 0.071†
  Temperature	 2003–2015	 -4.500	 1.355	 3.320	 0.005**
  Temperature	 2003–2020	 -3.833	 1.355	 2.828	 0.024*

impact) to 2003 (severe impact), but the water quality appears to have somewhat 
recovered in 2020 (moderate impact) (Fig. 4C); the BAP score at site 3 varied from 
2.39 to 3.98 (mean = 3.19, SD = 0.80). Site 4, located 14.8 km from the river mouth, 
was measured at 2 different time points (Fig. 4D). The BAP score at site 4 was 4.52 
(moderate impact) in 2015 and 2.25 (severe impact) in 2020. The mean BAP score 
at site 4 was 3.39 (SD = 1.61). Site 5 (9.0 km from the river mouth) consistently 
exhibited a moderate water quality impact scale over the past 22 years (mean = 
3.75, SD = 0.65, min–max = 3.02–4.44; Fig. 4E). Finally, the southernmost study 
site (site 6), which was located 4.5 km from the river mouth, exhibited a BAP score 
of 4.02 (moderate impact) in 2015 and 2.85 (moderate impact) in 2020 (Fig. 4F); 
the mean BAP score at site 6 was 3.44 (SD = 0.83).

Changes in biodiversity and chemical/physical variables across years
 For the 3 study sites (Sites 1, 2, and 5) in which there were data available for all 
4 time periods (1998, 2003, 2015, 2020), mixed-effects repeated-measure ANOVAs 
revealed differences across years for certain biodiversity indices, including BAP 
and FBI (Table 2). Of note, we found that there were lower BAP scores in 2020 than 
in 1998 and lower FBI values in 2003 than in 1998 or 2020 (Table 2). Moreover, 
repeated measure ANOVAs revealed differences across years for certain chemical 
and physical variables, including pH, river depth, river width, and temperature 
(Table 2). 

Changes in biodiversity across study sites from 1998 to 2020
 From the 6 study sites that were sampled from 1998 to 2020, mixed-effects re-
peated-measure ANOVAs revealed differences between study locations for certain 
biodiversity indices, including BAP, Family richness, FBI, EPT, and PMA (Table 3, 
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Fig. 5A–F). Notably, the study site located farthest from the mouth of the Bronx 
River (site 1) exhibited higher BAP scores and PMA than all 5 southern locations 
(sites 2–6). 

Discussion

 In a longitudinal assessment of New York City’s only freshwater river, we 
found spatial and temporal differences in overall water quality as indicated by 
benthic macroinvertebrate diversity. On a spatial scale, the presence of invasive 
species in the Bronx River was associated with differences in water quality across 
study sites. Specifically, study sites with high invasive-species dominance exhib-
ited benthic macroinvertebrate communities that were less healthy than locations 
with low invasive-species dominance. Moreover, in support of our prediction that 
upstream habitats exhibit higher diversity of benthic macroinvertebrates than 
downstream habitats, we found, compared to all downstream study sites, site 1 
(Valhalla) exhibited the healthiest biological profiles. On a temporal scale, we 
found that on average, the overall water quality of the Bronx River has remained 

Table 3. Tukey post hoc test results for differences in biodiversity indices between study sites (sites 
1–6) based on 4 time periods (1998, 2003, 2015, 2020). Statistical significance: † P < 0.1, * P < 0.05, 
** P < 0.01, *** P < 0.001.

	 Site
Biodiversity indices	 comparison	 Estimate	 SE	 z-value	 P

Biological assessment profile (BAP)	 1–2	 2.238	 0.367	 -6.089	 <0.001***
Biological assessment profile (BAP)	 1–3	 1.889	 0.402	 -4.693	 <0.001***
Biological assessment profile (BAP)	 1–4	 1.838	 0.466	 -3.944	 0.001**
Biological assessment profile (BAP)	 1–5	 1.475	 0.367	 -4.014	 <0.001***
Biological assessment profile (BAP)	 1–6	 1.788	 0.466	 -3.836	 0.002**
Family richness	 1–2	 2.548	 0.943	 -2.702	 0.073†
Family richness	 1–6	 3.188	 1.155	 -2.760	 0.063†
Family biotic index (FBI)	 1–2	 2.083	 0.358	 -5.819	 <0.001***
Family biotic index (FBI)	 1–4	 1.271	 0.455	 -2.794	 0.057†
Family biotic index (FBI)	 2–3	 -1.132	 0.392	 2.886	 0.044*
Family biotic index (FBI)	 2–5	 -1.300	 0.358	 3.633	 0.004**
Family biotic index (FBI)	 2–6	 -1.441	 0.455	 3.168	 0.019*
EPT family richness	 1–3	 2.157	 0.825	 -2.615	 0.092†
Percent model affinity (PMA)	 1–2	 3.283	 0.843	 -3.892	 0.001**
Percent model affinity (PMA)	 1–3	 2.728	 0.924	 -2.954	 0.036*
Percent model affinity (PMA)	 1–4	 3.018	 1.070	 -2.822	 0.053†
Percent model affinity (PMA)	 1–5	 2.883	 0.843	 -3.418	 0.008**
Percent model affinity (PMA)	 1–6	 3.258	 1.070	 -3.046	 0.027*

Figure 5 (see following page). Results of mixed-effects repeated-measure ANOVAs indicat-
ing differences in biodiversity indices across 6 study sites sampled at 4 timepoints. For these 
analyses, biodiversity indices were modeled as response variables, study site was modeled 
as a fixed effect, and year was modeled as a random effect. (A) Biological assessment pro-
file (BAP), (B) family richness (C) family biotic index (FBI), (D) EPT family richness, and 
(E) percent model affinity (PMA).
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Figure 5. [See previous page for caption.]
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moderately impacted over the span of 22 years, which supports our prediction 
that water quality along the Bronx River would remain similar to past values. 
However, contrary to this prediction, we also found longitudinal declines in water 
quality at the 3 most downstream sites: site 4 (Mount Vernon), site 5 (East Gun 
Hill Road), and site 6 (East 182nd Street Dam). Finally, we observed longitudinal 
changes in community composition as measured by benthic macroinvertebrate 
family dominance. Specifically, dominant benthic macroinvertebrate families 
in the Bronx River have shifted from Hydropsychidae (net-spinning caddisflies) 
and Chironomidae (non-biting midges) to Gammaridae (scuds) and Corbiculidae 
(Asian Clams). Results of this study highlight that temporal and spatial differenc-
es in water quality are key factors to consider in terms of urban river restoration, 
management, and conservation initiatives.

Invasive species impact overall water quality
 The proportional abundance of invasive species was associated with 2 mea-
sures of water quality: percent model affinity (comparison to a non-impacted 
community) and overall water quality (BAP). Specifically, study sites with a 
high level of invasive-species dominance were less likely to harbor a biologi-
cal community similar to a non-impacted community than study sites with a low 
level of invasive-species dominance. Indeed, the study sites with the most inva-
sive species exhibited the lowest PMA, whereas the study site with no invasive 
species harbored a biological community most similar to a non-impacted com-
munity. Although non-impacted community indices allow for 10% “other” taxa 
(NYSDEC-DOW 2019), which possibly includes invasive species, we found that 
when invasives were present, these taxa were likely to dominate the community, 
hence the low PMA values. Notably, we also found that the study site with no in-
vasive species exhibited the highest BAP score. 
 Two invasive species in particular were found to be established along the 
Bronx River: Asian Clam and Rusty Crayfish. Several studies have documented 
the adverse effects of these 2 species. For example, the Asian Clam has been 
shown to compete with native bivalves for food and habitat resources (Ferreira-
Rodríguez et al. 2018, Strayer 1999). Moreover, Yeager et al. (1999) found that 
the Asian Clam directly impacts the mortality of native bivalves by ingesting 
the larva of unionid mussels. Other studies have shown that Asian Clams typi-
cally undergo large die-offs during the summer, which can release toxins into 
waterbodies and negatively affect native bivalve populations (Cherry et al. 2005, 
Cooper et al.2005). Additionally, the invasive Rusty Crayfish has been observed 
competing with native crayfish species for ecological resources (Olden et al. 
2006, Smith et al. 2019). Several studies report a negative association between 
the invasive Rusty Crayfish and the density and abundance of several native 
benthic macroinvertebrate taxa including Ephemeroptera, Diptera, Odonata, and 
Gastropoda (Houghton et al. 1998, Kuhlmann 2016, McCarthy et al. 2006, Wilson 
et al. 2004). The adverse effects documented for these 2 invasive species might 
explain why study sites with high proportional abundances of invasive species 
exhibited lower BAP and PMA profiles.
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Water quality along the Bronx River has remained moderately impacted
 In support of our initial prediction, the average water quality of the Bronx River 
remained moderately impacted from 1998 to 2020. Study sites either experienced 
slight declines in overall water quality or remained relatively unchanged during this 
period. Some of these slight differences might reflect the changes in pH, river depth, 
river width, and water temperature observed across years. For example, the Bronx 
River exhibited significantly lower pH values in 2020 compared to the 3 historical 
studies. However, these results are still somewhat surprising because there have 
been several large-scale restoration efforts instituted over the past several decades 
to improve the water quality of the Bronx River (Cox and Bower 1998, de Kadt 
2011, Natural Resources Group 2008, USACE 2006). For example, the Bronx River 
Alliance has executed several restoration initiatives, including river cleanups, lit-
ter removal, tree plantings, invasive species removal, and erosion control (de Kadt 
2011). Despite these efforts, a report from the Natural Resources Group (2008) 
concluded that local restoration initiatives along the Bronx River have not directly 
benefited benthic macroinvertebrate community composition. de Kadt (2011) sur-
mised that despite many reclamation efforts, it is difficult to improve the water 
quality of the Bronx River because the river is regularly inundated by combined 
sewage overflows, runoff, and effluent discharges. Although the water quality along 
the Bronx River has not significantly improved over the past 22 years, these resto-
ration efforts might have helped to mitigate severe degradation of the river (Kail 
et al. 2015). Several studies have documented the limitations of stream restoration 
projects in urban areas (e.g., Alexander and Allan 2007, Bernhardt and Palmer 
2011, Bernhardt et al. 2007, Bond and Lake 2003, Larson et al. 2001, Sundermann 
et al. 2011; Violin et al. 2011). For example, Violin et al. (2011) found no significant 
differences in physical and biological variables between restored and unrestored 
urban rivers in North Carolina. Several ecologists suggest that in order to restore 
urban streams, land managers need to take a more comprehensive approach that col-
lectively include the following strategies: (1) the restoration of riparian vegetation, 
(2) instream habitat enhancement, (3) elimination of pipe stormwater treatment, 
(4) removal of legacy pollutants, and (5) dispersed stormwater treatment (Bernhardt 
and Palmer 2007; Palmer et al. 2010; Walsh et al. 2005 a, b). Of note, there are 
several combined sewage overflow and municipal separate stormwater system sites 
that feed into the Bronx River, which might explain why previous restoration ef-
forts have had limited effects on water quality (Bernhardt and Palmer 2007). Hence, 
future restoration efforts might consider instream enhancement by the addition of 
large woody debris (Miller et al. 2010), management of wastewater effluent and leg-
acy pollutants (Walsh et al. 2005b), improved river-catchment policies (Bernhardt 
and Palmer 2007), and collection of long-term pre-restoration and post-restoration 
data (Alexander and Allan 2007) to improve restoration utility and overall water 
quality of urban rivers.

Biodiversity indices along the Bronx River have changed over time
 Macroinvertebrate community composition. During the past 22 years, the Bronx 
River has undergone several changes in community composition. One pollution-
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sensitive taxon that was present historically, but not in the most recent survey, was 
Ephemeroptera. Specifically, there was limited abundance of Baetidae (mayfly) 
found during surveys of 1998, 2003, and 2015. In these historical studies, the pres-
ence of mayflies was documented only at Valhalla (site 1) during the 1998 and 2003 
surveys and were found at very low abundance at 5 study sites in the 2015 survey 
(Bode et al. 1998, 2003; Smith et al. 2015). However, mayflies were not sampled 
during the 2020 survey. The absence of mayflies in 2020 and the overall low pro-
portions throughout all survey years suggest that the Bronx River is an inhospitable 
habitat for these pollution-sensitive taxa (Bode et al. 2003). Moreover, the inva-
sive Rusty Crayfish might be responsible for inhibiting mayfly populations. For 
example, a benthic macroinvertebrate study in Wisconsin found declines in mayfly 
abundance in study sites and years with high Rusty Crayfish abundance (Wilson et 
al. 2004). Furthermore, a meta-analysis conducted by McCarthy et al. (2006) found 
a negative association between Rusty Crayfish and mayflies.
 One invasive family that was documented in 2020 but not in the historical sur-
veys was  Corbidiculidae (represented by the Asian Clam). Interestingly, freshwater 
bivalves from Family Sphaeriidae were surveyed in 1998 and 2015. However, this 
family was not documented in the current survey of the river. One possible reason 
for the absence of this group could be high abundance of the invasive Asian Clam 
across study sites. Indeed, the Asian Clam has been found to compete with Sphae-
riids for both habitat and food resources (Strayer 1999, Vaughn and Hakenkamp 
2001). Despite these negative impacts, studies also suggest that Asian Clams pro-
vide ecosystem services including the provision of shelter and substrate as well as 
food resources for other organisms (Ilarri and Sousa 2012, Sousa et al. 2008). Over-
all, shifts in community composition documented along the Bronx River reflect the 
dynamic nature of benthic macroinvertebrate communities in an urban setting.
 Family dominance. One striking result that we found when analyzing the long-
term data was shifts in dominant families over the past 22 years. Two families that 
became more dominant over time were Gammaridae (scuds) and Corbiculidae 
(Asian Clam), while two families that declined over time were Hydropsychidae 
(net-spinning caddisflies) and Chironomidae (non-biting midges). Studies have 
found that Family Gammaridae is capable of thriving in polluted water (Medupin 
2020, Natural Resources Group 2008), which might explain the high proportion of 
Gammaridae in the Bronx River. Interestingly, Family Corbiculidae was not docu-
mented in the 3 historical surveys (1998, 2003, and 2015), but became the second 
most dominant family in the year 2020. The invasive Asian Clam of Family Corbi-
culidae might have successfully invaded the Bronx River within the span of 5 years 
as the last survey conducted did not document the presence of this bivalve (Smith et 
al. 2015). Several life-history traits might have facilitated the establishment of the 
invasive Asian Clam along the Bronx River including rapid growth, early maturity, 
high fecundity rate, and rapid dispersal ability (McMahon 2002, Sousa et al. 2008).
 While Gammaridae and Corbiculidae became the 2 most dominant families 
in 2020, Hydropsychidae (net-spinning caddisflies) and Chironomidae under-
went precipitous declines over the past 2 decades. Because Trichopterans, which 
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include the family Hydropsychidae, tend to be pollution-sensitive, the slight 
declines in water quality that were documented in some of the study sites might 
explain the longitudinal reductions in the proportion of Hydropsychidae (Bradt 
2014, Bradt and Ruggiero 2017). Alternatively, the Asian Clam (Corbiculidae) 
might competitively exclude Hydropsychidae, but more data is required to test 
this hypothesis. Finally, Baladrón and Yozzo (2020) also observed declines in 
densities of Chironomidae at different study sites located along the Bronx River. 
Moreover, several studies suggest that many species from this family are sensi-
tive to different sources of pollution (Al-Shami et al. 2010, Odume and Muller 
2011, Wright and Burgin 2009). Collectively, these results provide evidence of 
the ephemeral nature of macroinvertebrate family dominance in the Bronx River. 
Whether these shifts are the results of natural variation or caused by ecological or 
anthropogenic disturbances remain unknown.

The most upstream location has better water quality compared to all 
downstream sites
 Among the 6 study sites sampled across 22 years, the most upstream site (Val-
halla) exhibited the highest BAP scores and PMA compared to all 5 downstream 
locations. Several factors, including geomorphological, biotic, and anthropogenic 
variables, might explain these results.
 Geomorphological variables. Changes in geomorphological characteristics 
from upstream to downstream might result in differences in habitat quality. The 
river continuum concept, the idea that rivers undergo changes in geomorphologi-
cal properties, including width, depth, and complexity, as the river flows from an 
upstream to downstream location, might explain spatial differences in macroinver-
tebrate diversity (Sedell et al. 1978). However, the Bronx River contains several 
dams over a short distance, which might impede the river’s continuum (DeMarte 
et al. 2016). The discontinuum concept alternatively posits that dams and other 
barriers create a mosaic of patches that possibly disrupt allochthonous and autoch-
thonous inputs, which result in changes in stream characteristics that might impact 
patterns of macroinvertebrate diversity (Doretto et al. 2020, Poole 2002).
 Biotic variables. Biotic factors might also explain differences between Valhalla 
and the downstream study sites. In the current study, Valhalla was the only study 
site that harbored no invasive species. Since invasive species are known to disrupt 
native species abundance (Bradley et al. 2019, Gallardo et al. 2016), the absence of 
invasive species in Valhalla might explain why this study site exhibited higher BAP 
scores and PMA than all downstream sites. If the Asian Clam becomes established 
in Valhalla in the near future, it will be interesting to see if biodiversity indices 
decline correspondingly.
 Anthropogenic variables. Finally, anthropogenic factors, including the down-
stream locations of combined sewage overflows and municipal separate stormwater 
systems, low human population density, and percent development, might explain 
differences in water quality in Valhalla compared to all downstream sites. Val-
halla is located upstream of combined sewage overflow and municipal separate 
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stormwater system sites (Fig. 2). Therefore, all study sites downstream of Valhalla 
are subject to discharges of organic, municipal, and industrial waste (Bode et al. 
1998, 2003; Smith et al. 2015). These sources of pollution might explain why we 
found no differences in biodiversity indices for samples collected in 2020 when 
comparing upper, middle, and lower reaches of the Bronx River but instead, 
when comparing individual study sites, Valhalla exhibited significantly higher bio-
diversity indices than all downstream study sites. 
 Moreover, the low human population density of Valhalla might explain why this 
study site exhibited the highest biodiversity indices. Importantly, the establishment 
of invasive species is associated with high human population density (Castañeda 
2012), which might account for the absence of invasive species in Valhalla. If these 
invasive species are spreading from the south, then it might be a matter of time 
before they disperse to Valhalla. 
 Valhalla also exhibited the lowest proportion of developed land cover compared 
to all 5 downstream sites, which is another reason why this study site might have 
exhibited the highest biodiversity indices. In support, several studies of urban 
streams have found a positive correlation between proportion of greenspace and 
macroinvertebrate diversity (Moore and Palmer 2005, Roy et al. 2003, Sponseller 
et al. 2001). While we found no differences in biodiversity indices of samples col-
lected in 2020 when comparing dominant land-cover types, this result might reflect 
the unusual nature of the East 182nd Street study site (site 5), which had a high 
proportion of greenspace because of its location adjacent to the Bronx Zoo, but 
also the highest human population density of all 6 study sites. In contrast, the study 
site in Valhalla exhibited both low human population density and a high proportion 
of greenspace. Altogether, these findings raise the possibility that a combination of 
variables, an upstream location, low human population density, and percent greens-
pace, among other factors, might work synergistically to support macroinvertebrate 
diversity in an urban river.

Conclusions and future directions
 A longitudinal assessment of the Bronx River over the past 22 years not only 
provides well-detailed information on the overall health of the Bronx River, but also 
indicates possible factors causing declines in water quality as measured by benthic 
macroinvertebrate diversity. However, the current study only surveyed 6 locations 
and therefore provides limited results in terms of an overall water quality assess-
ment of the river. Moreover, the biodiversity indices used to measure water quality 
might have limited utility if other factors, such as climate change and geomorpho-
logical properties, substantially contribute to changes in benthic macroinvertebrate 
diversity. Despite these limitations, the results of the current study documented a 
recent invasion of the Asian Clam in 5 of 6 study locations, found relatively bet-
ter biodiversity profiles at the northernmost study site, and indicated that despite 
restoration efforts, overall water quality of the Bronx River has remained moder-
ately impacted. These results suggest that it is quite difficult to rectify damages to 
riverine ecosystems once they are inflicted with anthropogenic disturbances, and 
possibly the limited utility of small- to moderate-scale urban restoration projects. 
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These current results might be useful for state and city agencies, non-profit and 
conservation organizations, and other interested parties to further monitor and as-
sess water quality and benthic macroinvertebrate diversity. Moreover, as previous 
studies have not documented the invasive Asian Clam, results of this current study 
might also be helpful for establishing invasive species management strategies along 
the Bronx River. Future assessment of the Bronx River should incorporate more 
locations along the river to evaluate the effects of abiotic, biotic, and anthropogenic 
factors on benthic macroinvertebrate diversity.
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